US009069587B2

a2z United States Patent (10) Patent No.: US 9,069,587 B2
Agarwal et al. 45) Date of Patent: Jun. 30, 2015
(54) SYSTEM AND METHOD TO CACHE GOG6F 12/0842 (2013.01); GO6F 12/0866
HYPERVISOR DATA (2013.01); GO6F 2212/152 (2013.01); GO6F
9/4856 (2013.01)
(71) Applicant: STEC, Inc., Santa Ana, CA (US) (58) Field of Classification Search
USPC coovivveeeiienee 718/1-105; 711/6, 111-113
(72) Inventors: Anurag Agarwal, Pune (IN); Anand See application file for complete search history.
Mitra, Pune (IN); Prasad Joshi,
Maharashtra (IN); Kanishk Rastogi, (56) References Cited
Maharashtra (IN)
U.S. PATENT DOCUMENTS
(73) ASSlgnee: STEC’ INC" Santa Ana’ CA (US) 6’389’509 Bl 3k 5/2002 Berenguel et al' """"""""" 711/1 13
. 2006/0136667 Al* 6/2006 Shultzetal. 711/118
(*) Notice: Subject to any disclaimer, the term of this 2006/0174087 Al* 82006 Hashimoto et al. 711/173
patent is extended or adjusted under 35 2007/0106992 Al* 5/2007 Kitamura 718/104
U.S.C. 154(b) by 0 days. 2012/0005668 Al* 1/2012 Serizawa etal. 718/1
2012/0072685 Al* 3/2012 Oftani 711/162

) 2012/0102137 Al* 4/2012 Pruthi et al. . 7097213
(21) Appl. No.: 13/662,183 2012/0215970 Al* 82012 Shats 711/103
2012/0304171 AL* 11/2012 Joshi et al. oooovoooverrerreirn, 718/1

(22) Filed: Oct. 26, 2012
* cited by examiner

(65) Prior Publication Data

Primary Examiner — Abdullah Al Kawsar
US 2013/0111474 Al May 2, 2013

(74) Attorney, Agent, or Firm — Wilmer Cutler Pickering

Hale and Dorr LLP
Related U.S. Application Data
(60) Provisional application No. 61/553,619, filed on Oct. (57 ABSTRACT
31, 2011. Systems and methods for caching data from a plurality of
virtual machines are disclosed. In one particular exemplary
(51) Int.CL embodiment, the systems and methods may be realized as a
GOGF 9/46 (2006.01) method for caching data from a plurality of virtual machines.
GOGF 9/455 (2006.01) The method may comprise detecting, using a computer pro-
GO6I 11/00 (2006.01) cessor executing cache management software, initiation of
GOG6F 13/00 (2006.01) migration of a cached virtual machine from a first virtualiza-
GO6I 21/00 (2013.01) tion platform to a second virtualization platform, disabling
GOGF 9/50 (2006.01) caching for the virtual machine on the first virtualization
GO6F 12/08 (2006.01) platform, detecting completion of the migration of the virtual
GOGF 9/48 (2006.01) machine to the second virtualization platform, and enabling
(52) US.CL caching for the virtual machine on the second virtualization
CPC GO6F 9/455 (2013.01); GOGF 9/45558 platform.
(2013.01); GO6F 9/5077 (2013.01); GOGF
2009/4557 (2013.01); GO6F 12/0888 (2013.01); 11 Claims, 14 Drawing Sheets

Hypervisor server 100

219

US 9,069,587 B2

Sheet 1 of 14

Jun. 30, 2015

U.S. Patent

Y Oid

KRR O KRR K, .. .

oF | v
Jargeg sbeioig | 1aneg abeioig

ail

0L g | euoen |
IO 02 oMmaN ass |
Ll Mowmbm%x
0e SAAIA 27 NYS
B 9z "WUDN
. syoBnD
ot | vz -ddy
BALSS 10SIAIBdA B
1OMIES IORMBERH (2)201 WA wswabeuepy
1880
\\\Xx (U)oL WA Kowopy
01 weisAg

US 9,069,587 B2

Sheet 2 of 14

Jun. 30, 2015

U.S. Patent

gl "9l
Q9L qorL| legyy| | 9801
N ass
|
: — A
~agiL agil” | esll ~—aoLL
Ll SANA 2Ll SANA
SrrAN qcel

e0CL

00T 1oni0s JosiaadAl

US 9,069,587 B2

Sheet 3 of 14

Jun. 30, 2015

U.S. Patent

¢ Old

ﬁ c0¢ SdNA

v0Oe

1

gLe el

0lc

SYIEDNA v

]

9802

P —

00¢
IEVNETS

\

001 Joaos JoSinBdAH

abeioig

U.S. Patent Jun. 30, 2015 Sheet 4 of 14 US 9,069,587 B2

300

2
30 N RECEIVE REQUEST

FROM HOST VM
TO READ FILE

SEND READ REQUEST
304\ TO STANDALONE

CACHING SOFTWARE
ON INTERMEDIATE VM

306
NO

READ REQUESTED
DATA FROM
LUN ON 8CSESERVER

308 < | READ REQUESTED
DATA FROM S8D

312 | STORE REQUESTED
DATA ON SSD

FIG. 3

U.S. Patent Jun. 30, 2015 Sheet 5 of 14 US 9,069,587 B2

400

¥

402
RECEIVE REQUEST

FROM HOST VM
TO WRITE FILE

404
SEND WRITE REQUEST /
TO CACHING SOFTWARE
ON INTERMEDIATE VM

WRITE REQUESTED /

DATATO SSD

406

WRITE REQUESTED DATA | __~ 408

TO SOURCE LUN
ON iSCSI SERVER

FIG. 4

US 9,069,587 B2

Sheet 6 of 14

Jun. 30, 2015

U.S. Patent

8L

pLl SHNA

001 JeAtss JosiaiedAH

US 9,069,587 B2

Sheet 7 of 14

Jun. 30, 2015

U.S. Patent

g6 'Ol
174
| |
a9Lz €91z

c0¢ SANA

dss, - assi

9Lz \ ke

)

buiddewy sanag

|
oz

D

00¢
FETNES

SUYIEDNA _

v

001 48188 JosinJadAH

abeioig

US 9,069,587 B2

Sheet 8 of 14

Jun. 30, 2015

U.S. Patent

V9 Oid

aiid el ManA -0 eepelen A

A Buiuunyg
\......Eakfgiuj
@@@mchmm.\s&i ,,,,,,,,,, mﬁ ala mam%m TaTaTalwTa
»fr‘l%ll\?i\smy %
WABuunyION s
H 5 g
: 709 !
809 ' | auemyog !
ass © ; syoey e !
M !
f i
4 i
—IR % B 8|8 A A A R
200 asibay
009 O/t eie(d

US 9,069,587 B2

Sheet 9 of 14

Jun. 30, 2015

U.S. Patent

d9

Old

\\mww

143°

% || 2l gl s #lx
LINNA
Z19 019
oo \ » \
///
8 2\ n 2 2 B 2. 2
p LIAIA
Z19 019
919 N\ L N\
// ///
g 2 = g S S8 B

F-

LINA

U.S. Patent

Jun. 30, 2015

Sheet 10 of 14

US 9,069,587 B2

620

v

DETECT MIGRATICON OF
VIRTUAL MACHINE

622

DISABLE CACHING OF
VIRTUAL MACHINE

/
/ 624

826

DETECT COMPLETION OF
VIRTUAL MACHINE
MIGRATION

ENABLE CACHING OF
VIRTUAL MACHINE

628
-

FIG. 6C

V. 9l

US 9,069,587 B2

Sheet 11 of 14

Jun. 30, 2015

‘pansasoN s

WHISze

1504 %3

1851 IRAIRG DIRTURYNT

SIMAOT ST (58

o MBGHOT (95 B

me Aiopleal

U.S. Patent

US 9,069,587 B2

Sheet 12 of 14

Jun. 30, 2015

U.S. Patent

¥0

A

g4 9ld

o

M

<o
=
T

o

%] e
{4300 o) epuanioNesA o \
A & P390 100190005 PR
HUS- %é\,@_ =) SFLOLE Y9GS AR50 BEU
P ety EURIER T
eiLiaieN- %:] =)
(PApREY w_m SUBY AULERG SUWEN WA &3
070480187 JEUPAS U0 G0-vR5 L bt suwep JopR S${E3]
jeioiseien
Aoy {8 ueasy £ 2UCI8HSA
@_gﬁ@m @ﬁuﬁo q58

US 9,069,587 B2

Sheet 13 of 14

Jun. 30, 2015

U.S. Patent

L

OVARIIE

o

g

ale) rai}

{95 07y g st}

Gl i, B0~

S sy

SuoH By YiBsa 20402241 0K XS m e 21035-¥53
%53 woy 1ofic] G smos 8y s

wAjates 089 9

US 9,069,587 B2

Sheet 14 of 14

Jun. 30, 2015

U.S. Patent

<o
&

o

by

8¢

Y0

O U] 8L 8sUod

JBS0

N

o>

&

" B0901 (EERTES0 L

3R

RIKAALD:

el

AU

X3 wioy ot G

w B0

«&u&t& BUSLT 058

LomlanL Yo umpmmmm

&4 opounpy B4

suoeoiddy pie s

US 9,069,587 B2

1
SYSTEM AND METHOD TO CACHE
HYPERVISOR DATA

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority under 35 U.S.C. §119(e)
to, and incorporates by reference in its entirety, U.S. Patent
Application No. 61/553,619, titled “System and Method to
Cache Hypervisor Datastorage” filed on Oct. 31, 2011.

FIELD OF THE DISCLOSURE

Embodiments of this disclosure relate to hypervisor virtual
machine computing environments generally, and specifically
to caching data for one or more virtual machines.

Background

Memory devices are often used to store data provided by a
computer program. Examples of memory storage devices
include, but are not limited to, solid-state devices (SSDs),
hard disk drives, and optical drives. These types of storage
devices are inexpensive and hold large amounts of data. How-
ever, one tradeoff for their economic value is that they are
slow compared to other components used in a computer. For
example, a consumer hard drive can store terabytes of data
cheaply, but has a maximum theoretical transfer rate of 300
megabytes (MB) per second. Random access memory
(RAM) is faster in performance but higher in price, with a
maximum theoretical transfer rate of 12.8 gigabytes (GB) per
second. A central processing unit (CPU) with specialized
memory known as level 1 (1) cache or level 2 (1.2) cache has
even better performance but at an even higher price, with a
transfer rate of 16 GB per second, or over fifty times faster
than the storage device.

Because computer components exhibit this tradeoff
between price and performance, a technique known as cach-
ing may be used to increase, or accelerate, overall system
performance. Caching may be used to store data requested
from one component, into another component, to speed future
requests for the same data. The data stored in a cache often
may be values previously requested by a software application,
by an operating system, or by another hardware component.
Caching organizes a small amount of fast-access memory and
a large amount of slow-access memory. The first time that a
value is requested, the data is not in the cache, so the requested
value is retrieved from the slow-access memory. In a cache,
when the value is retrieved from the slow-access memory, the
value is sent to the component that requested it, and the value
also is stored in the fast-access memory for future requests.
The next time that the same value is requested by the operat-
ing system or by any other program, the value is retrieved
from the fast-access memory, with the result that the overall
system performance is faster, or accelerated, by virtue of the
value being available from the fast-access memory. By using
faster memory components to cache data more requests can
be served from the cache instead of the slower storage device
and the faster overall system performance can be realized.

Computers run operating systems such as MICROSOFT®
Windows, MACINTOSH® OS X®, LINUX®, or UNIX®.
An operating system manages computer hardware resources
and provides common services for execution of various soft-
ware applications. A virtual machine (“VM”) is a software
implementation of a computer that runs programs as if it is
physical computer hardware. Typically a virtual machine has

10

15

20

25

30

35

40

45

50

55

60

65

2

acompletely isolated operating system, called a “guest” oper-
ating system, installed and running within a normal host
operating system.

A hypervisor is software that allows multiple virtual
machines to run concurrently on a single host computer. The
name hypervisor is used because the programming runs con-
ceptually one level higher than a “supervisor” program. In
Information Technology administration, administrators strive
to balance competing goals of finding ways to scale and
consolidate their computing infrastructures, while at the same
time decreasing the management overhead required to allo-
cate and monitor resources in those infrastructures. One way
to address these competing goals is to run multiple virtual
machines concurrently using a hypervisor. Hypervisors are
generally installed on server hardware whose sole dedicated
task is to run virtual machines. “Bare metal” hypervisors run
directly on host hardware to control the hardware and to
manage guest operating systems. VMWARE®, Inc.’s ESX
and ESXi products are examples of bare metal hypervisors.

In the VMWARE® ESX and ESXi products, virtual
machines access computer files using a file system known as
Virtual Machine File System (VMFS). VMFS provides a file
system and storage virtualization optimized for virtual
machines. Each virtual machine is allocated its own virtual
storage in VMFS. VMEFS provides a common mechanism for
ensuring data consistency for accessing virtual storage
among multiple virtual machines and among multiple hyper-
visor platforms.

Storage subsystems employed for critical applications
employ multiple levels of redundancy to ensure higher avail-
ability even when components fail. It is common to configure
multiple paths to a storage device. Multi-pathing is when the
same storage device can be reached from a host via two routes
involving two distinct set of hardware interconnects and
bridges. This ensures the data is still accessible when the
interconnect or adapter fails.

SUMMARY

Systems and methods for caching data from a plurality of
virtual machines are disclosed. In one particular exemplary
embodiment, the systems and methods may be realized as a
method for caching data from a plurality of virtual machines.
The method may comprise detecting, using a computer pro-
cessor executing cache management software, initiation of
migration of a cached virtual machine from a first virtualiza-
tion platform to a second virtualization platform, disabling
caching for the virtual machine on the first virtualization
platform, detecting completion of the migration of the virtual
machine to the second virtualization platform, and enabling
caching for the virtual machine on the second virtualization
platform.

In accordance with further aspects of the present disclo-
sure, embodiments for caching data from a plurality of virtual
machines may include implementing cache management
software on a hypervisor. For example, cache management
software can be implemented on a hypervisor as a virtual
machine can be exposed to the hypervisor as a storage device.

In one or more embodiments of the present disclosure,
detection of the completion of the migration of a virtual
machine to a second virtualization platform can be performed
using a computer processor executing cache management
software. According to some embodiments, at least one of the
first virtualization platform and the second virtualization plat-
form can comprise a host. Cache storage of embodiments
may comprise a Solid State Device (SSD).

US 9,069,587 B2

3

In accordance with further aspects of the present disclosure
the systems and methods for caching data may include invali-
dating, in cache storage, one or more blocks associated with
the virtual machine on the first virtualization platform subse-
quent to the disabling of caching for the virtual machine on
the first virtualization platform.

In another exemplary embodiment, the systems and meth-
ods for caching data may be realized as a system for caching
data from a plurality of virtual machines. The system can
comprise cache storage and a computer having a non-transi-
tory computer memory having stored caching instructions
stored in the computer memory. The caching instructions may
configure the computer to cache data from the plurality of
virtual machines. The caching instructions may comprise
instructions for detecting initiation of migration of a cached
virtual machine from a first virtualization platform to a sec-
ond virtualization platform, disabling caching for the virtual
machine on the first virtualization platform, detecting
completion of the migration of the virtual machine to the
second virtualization platform, and enabling caching for the
virtual machine on the second virtualization platform.
According to some embodiments, cache storage on the sys-
tem may comprise a Solid State Device (SSD).

In accordance with further aspects of the present disclo-
sure, detection of initiation of the migration of the virtual
machine utilizing caching is performed by cache manage-
ment software implemented on a hypervisor. Detection of the
completion of the migration of the virtual machine utilizing
caching may also be performed by cache management soft-
ware implemented on a hypervisor in one or more embodi-
ments.

In yet another exemplary embodiment, the systems and
methods for caching data may be realized as an article of
manufacture for caching data from a plurality of virtual
machines. The article of manufacture may comprise at least
one non-transitory processor readable storage medium and
instructions stored on the at least one medium. The instruc-
tions may be configured to be readable from the at least one
medium by at least one processor and thereby cause the at
least one processor to operate so as to detect initiation of
migration of a cached virtual machine from a first virtualiza-
tion platform to a second virtualization platform, disable
caching for the virtual machine on the first virtualization
platform, detect completion of the migration of the virtual
machine to the second virtualization platform, and enable
caching for the virtual machine on the second virtualization
platform. According to some embodiments, the instructions
may comprise part of cache management software imple-
mented on a hypervisor.

In still another exemplary embodiment, the systems and
methods for caching data may be realized as a system for
caching data from a plurality of virtual machines. The system
may comprise cache storage, a computer having a computer
processor and non-transitory computer memory having
stored thereon executable caching instructions. The caching
instructions may configure the computer to identify a virtual
machine of the plurality of virtual machines which is operat-
ing, allocate a portion of the cache storage to the virtual
machine, and perform caching of data to handle an input/
output request of the virtual machine. According to some
aspects of such embodiments, the caching instructions may
further configure the computer to identify a virtual machine
of the plurality of virtual machines which is not operating,
and invalidate a portion of the cache storage associated with
the virtual machine of the plurality of virtual machines which
is not operating.

20

40

45

50

55

4
BRIEF DESCRIPTION OF THE DRAWINGS

So that the features and advantages of the disclosure may
be understood in more detail, a more particular description of
the disclosure briefly summarized above may be had by ref-
erence to the appended drawings, which form a part of this
specification. It is to be noted, however, that the drawings
illustrate only various embodiments of the disclosure and are
therefore not to be considered limiting of the disclosure’s
scope as it may include other effective embodiments as well.

FIG. 1A illustrates a block diagram of a server having a
hypervisor and virtual file system stored thereon according to
some embodiments of the disclosure;

FIG. 1B illustrates a block diagram of a system for hyper-
visor caching by allocating SSDs to individual virtual
machines according to some embodiments of the disclosure;

FIG. 2 illustrates a block diagram of another system for
hypervisor caching using a virtual machine according to
some embodiments of the disclosure;

FIG. 3 illustrates a flow diagram of a method for respond-
ing to read requests in a system for hypervisor caching using
a virtual machine according to some embodiments of the
disclosure;

FIG. 4 illustrates a flow diagram of a method for respond-
ing to write requests in a system for hypervisor caching using
a virtual machine according to some embodiments of the
present disclosure;

FIG. 5A illustrates an existing hypervisor deployment to be
migrated to a deployment using a cache according to some
embodiments of the present disclosure;

FIG. 5B illustrates a migrated hypervisor deployment, with
a cache, according to some embodiments of the present dis-
closure;

FIG. 6A is a block diagram of cache storage for operating
virtual machines that are in operation according to an some
embodiments of the present disclosure;

FIG. 6B is a block diagram of a virtual machine migration
and change in cache storage according to some embodiments
of the present disclosure;

FIG. 6C illustrates a flow diagram of a method for manag-
ing caching of a virtual machine during migration according
to some embodiments of the present disclosure;

FIG. 7A is a graphical user interface (“GUI”) showing
deployment options for implementing a cache for a plurality
of virtual machines according to some embodiments of the
present disclosure;

FIG. 7B is another GUI showing deployment options for
implementing a cache for a plurality of virtual machines
according to some embodiments of the present disclosure;

FIG. 7C is a GUI showing deployment options for imple-
menting a cache for a plurality of virtual machines according
to some embodiments of the present disclosure; and

FIG. 7D is another GUI showing deployment options for
implementing a cache for a plurality of virtual machines
according to some embodiments of the present disclosure.

DETAILED DESCRIPTION

In general, the present disclosure provides SSD based stor-
age caching for one or more virtual machines. Caching may
include caching of a plurality of virtual machines operating
on a hypervisor platform. This caching may leverage existing
SSD caching software. For example EnhancelO™ SSD cach-
ing software produced by STEC, Inc. or other caching soft-
ware, for standalone hosts in a virtualized system may be
leveraged. Exemplary hypervisors include VMWARE® ESX
and VMWARE® ESXi.

US 9,069,587 B2

5

According to one or more embodiments of the present
disclosure, caching of virtual machine during migration from
afirst virtualization platform (e.g., a hypervisor on a server) to
a second virtualization platform can be managed. The dis-
closed management of cache during a migration process may
improve cache coherence and reduce a risk of stale cache. In
some embodiments, cache associated with a VM on a first
platform may be disabled prior to migration. Subsequent to
migration to a second virtualization platform cache on the
second virtualization platform may be associated with the
migrated VM and enabled.

One or more embodiments of the present disclosure may
improve management of caching by monitoring whether vir-
tual machines are active or not (e.g., shutdown, powered on,
halted, etc.) If a virtual machine is active (e.g., powered on
and not suspended) a portion of cache may be allocated to the
virtual machine and caching for the virtual machine may be
performed. If a virtual machine is not active (e.g., shutdown
or halted) a portion of cache associated with the inactive
virtual machine may be invalidated. This may reduce a risk of
stale cache and preserve caching resources.

Hypervisor software may allow a plurality of virtual
machines to run concurrently on a single host computer (e.g.,
by providing virtual computer “hardware” for each virtual
machine). Hypervisors may also support virtual machines
running different operating systems and/or different virtual
hardware. Hypervisors are generally installed on server hard-
ware, but also may be installed as a layer above the server
operating system. For example, hypervisors can be of the
“bare metal” type and may run directly on host hardware to
manage guest operating systems. Hypervisors may also be
“hosted” hypervisors that run on a conventional operating
system environment. VMWARE®, Inc.’s ESX and ESXi
products are examples of bare metal hypervisors, while
BHyVe, VMware Workstation and VirtualBox are examples
of hosted hypervisors. Some embodiments of the present
disclosure may implement a cache of an entire datastore,
which may be shared among multiple virtual machines run-
ning on a hypervisor platform. Virtual machines can be man-
aged by hypervisor software that can create caching issues
(e.g., access problems between the virtual machines and the
physical cache). Embodiments of the present disclosure also
address these issues.

In the VMWARE® ESX and ESXi hypervisor programs,
virtual machines access virtual file storage, a software imple-
mentation of physical file storage that links to physically
stored computer files (e.g., Virtual Machine File System
(VMFS) produced by VMWARE®). Such virtual file systems
provide storage virtualization optimized for virtual machines
and allow the virtual machine to read a write from disk stor-
age using a common set of protocols and in parallel. In other
words, such virtual file systems enable multiple read/writes to
disk storage from different operating systems, often at sub-
stantially the same time, even though the virtual machines are
operating on the same physical computer server. As such,
many virtual file systems may allocate each virtual machine
its own virtual storage and its own portion of physical disk
storage. For example, a hypervisor such as VMWARE® ESX
and VMWARE® ESXi may be installed on a server, with an
SSD storage device connected to the server to act as a cache
for the virtual machines hosted by such platform.

Embodiments of the present disclosure may implement
caching by creating an virtual machine (hereinafter
VMCache) between a virtual machine file system (VMFS)
(e.g., the VMWARE® Virtual Machine File System) and
source storage. Solid state devices exhibit better performance
characteristics than other storage devices, so faster but

10

15

20

25

30

35

40

45

50

55

60

65

6

smaller solid state devices are good candidates to act as
caches for slower but larger storage devices. According to
some embodiments, the VMCache virtual machine can be
connected to a plurality of SSDs, or other fast medium, such
as, for example, but not limited to, phase change memory
(PCM), memristor, magnetoresistive random access memory
(MRAM), battery backed up memory. Embodiments of the
present disclosure may use attached SSDs as caches to
improve overall system performance. One or more embodi-
ments of the present disclosure can access SSDs in a
VMCache virtual machine via a hardware virtualization
interface known as PCI pass-through (Peripheral Component
Interconnect pass through).

Moreover, SSD caching software may run on standalone
computers to cache storage requests using SSDs. In perfor-
mance testing on standalone hosts, the SSD caching software
resulted in about 2.5 times better throughput than without
SSD caching enabled, with response time improving over ten
times faster than without SSD caching enabled. The SSD
caching software can support about 3.5 times more concur-
rent users with an average response time of less than two
seconds. However, the number of supported users can fluc-
tuate based on current workload.

In some embodiments, data are pre-fetched and cached
before being requested by application. One or more embodi-
ments can use applications semantics or Al algorithms to
predict what will be the next data that will be accessed and
cache it proactively.

Figures accompanying the present disclosure may illus-
trate a single or multiple components. (e.g., one or more
virtual machines, one or more SSDs, and/or one or more
interfaces). A person of ordinary skill in the art will appreciate
that components may be increased, reduced, combined, sepa-
rated, or otherwise arranged.

Turning to the figures, as shown in FIG. 1A, embodiments
of system 10 of the disclosure include hypervisor server 100.
Hypervisor server 100 may include a hypervisor 11, a virtual
machine file system (“VMFS”) 20, a SAN 22, a user man-
agement application 24, a cache management software 26
operating on a kernel of the server, and a plurality of virtual
machines (“VMs”) 102(a)-102(»). Embodiments of system
10 may also include a network 30 and a plurality of storage
servers 40 (e.g., SSD storage, disk, and/or other electronic
storage). System 10 also may include one or more clients 70
which may be communicatively coupled via network 30 to
one or more virtual machines. As discussed above, hypervisor
server 100 may be implemented on one or more commercially
available computer servers. For example, such a server may
include an I/O device such as a network card/controller con-
nected by a PCI bus to a motherboard, a computer processor
and memory (e.g., any combination of non-volatile memory
such as hard disks, flash memory, optical disks, and the like,
and volatile memory such as SRAM, DRAM, SDRAM, etc.).
Hypervisor software, one or more virtual machines, and vir-
tual file system software may be stored in the memory for use
by a server operating system, and one or more of these pro-
grams may operate directly on the server hardware or on the
operating system of the server.

Hypervisor server 100 may be connected to the plurality of
storage devices 40 via network 30. Although network 30 is
illustrated as a single network it may be one or more net-
works. Network 30 may establish a computing cloud (e.g., the
software implementing the virtual machines and storage
devices are hosted by a cloud provider and exists “in the
cloud”). Moreover, network 30 can be a combination of pub-
lic and/or private networks, which can include any combina-
tion of the internet and intranet systems that allow the hyper-

US 9,069,587 B2

7

visor server 100, and a plurality of virtual machines operating
thereon, to access storage servers 40; and for client 70 to
access the virtual machines. For example, network 30 can
connect one or more of the system components using the
internet, a local area network (“LAN”) such as Ethernet or
WI-FI, or wide area network (“WAN”) such as LAN to LAN
via internet tunneling, or a combination thereof, using elec-
trical cable such as HomePNA or power line communication,
optical fiber, or radio waves such as wireless LAN, to transmit
data. In this regard, the server and storage devices may use
standard internet protocols for communication (e.g., iISCSI).
In some embodiments, hypervisor server 100 may be con-
nected to the communications network using a wired connec-
tion to the internet.

The communication network may interface with storage
servers 40 (e.g., via afirewall) to provide a secure access point
for storage devices and clients and to prevent one or more
clients 70 from accessing various virtual machines in system
10 without authorization. In some embodiments, a firewall
may be a network layer firewall (i.e., packet filters, applica-
tion level firewalls, or proxy servers). Although in some
embodiments a packet filter can block certain source IP
addresses, in other embodiments, a packet filter firewall can
be used to block traffic from particular source ports, destina-
tion IP addresses or ports, or destination service like www or
FTP. In other embodiments, an application layer firewall may
be used to intercept all packets traveling to or from the sys-
tem, and may be used to prevent certain users from accessing
the system. Still, in other embodiments, a proxy server may
act as a firewall by responding to some input packets and
blocking other packets.

Returning to FIG. 1A, storage servers 40 communicate
with and upload data to the hypervisor server 100 via the
network 30. As such, storage servers 40 may be, for example,
slow-access storage or fast access storage comprising one or
more computers, file servers or database servers. Storage
servers 40 may be implemented as network attached storage
(“NAS”), storage area networks (“SAN”), direct access stor-
age (“DAS”), multiple hard disk drives, SSDs, or any com-
bination thereof.

As mentioned above, in addition to storage servers 40,
embodiments also may include one or more SSD cache 116,
which may implement SSD-based storage caching for a
hypervisor platform operating on the server. To do this,
embodiments of the disclosure may leverage existing SSD
caching software such as EnhancelO or other caching soft-
ware for standalone hosts. For example, a hypervisor such as
VMWARE® ESX and VMWARE® ESXi may be installed
on hypervisor server 100, with an SSD storage device con-
nected to the hypervisor server 100 providing a cache for the
virtual machines hosted by such platforms. Caching may be
achieved by creating a virtual machine (hereinafter
“VMCache”) between the virtual file system, e.g.,
VMWARE® Virtual Machine File System (“VMFS”), and
physical storage for the virtual machines.

FIG. 1A is a description of a network or cloud-based imple-
mentation of an embodiment of the present disclosure. How-
ever, implementations not using a cloud are also possible.
FIG. 1B illustrates a block diagram of a system for caching
data of one or more virtual machines by allocating one or
more SSDs to the one or more virtual machines. FIG. 1B
includes a hypervisor server 100; virtual machines (VMs)
102a-n; interfaces 120a-b, 122a-n; VMFES 112 with storage
108a-b and interfaces 110a-b; and VMFS 114 with storage
1164a-c and interfaces 118a-c.

The hypervisor server 100 may include one or more virtual
machines such as, for example, VMs 1024, 1025, and 102c.

10

15

20

25

30

35

40

45

50

55

60

65

8

VMs 102 may use VMFS 112 and VMFS 114 via interfaces
120a, 1205, 122a, 122b, and 122¢ to access files stored on
SSDs 108a, 1085 and on storage 1164, 1165, 116¢. VM 1024
may use interface 120a and VM 1025 may use interface 1205
to access VMFS 112. VMs 102a, 1025, and 102¢ may use
interfaces 122a, 1225, 122¢, respectively to access VMFS
114. As illustrated in FIG. 1B, VMFS 112 may be an inde-
pendent VMFS datastore using only SSDs 108a and 1085
over interfaces 110a and 1105. VMFS 112 may perform faster
than VMFS 114 because storage 116a-116¢ may perform
reads and writes slower than SSDs 1084-1085. An adminis-
trator may configure VMFS datastore 114 to access storage
116a-116¢ over interfaces 118a-118¢. The administrator may
configure the standalone SSD caching software on one or
more of VMs 1024-10256 using information about desired
virtual machines and storage to cache. For example, if the
administrator configures VM 102a to utilize SSD 1084, the
administrator may configure the SSD caching software on
VM 102a with information about SSD 1082, VM 102a,
VMES 112, and VMFS 114. Accordingly, the SSD caching
software configuration on VM 102a may send read file
requests and write file requests to the faster VMFS 112, rather
than have the slower VMFS 114 respond to the requests.

Although the direct-SSD system illustrated in FIG. 1B may
be implemented, the system may have a few limitations. For
example, an administrator may configure SSD caching soft-
ware separately for each VM 102 to utilize the speed advan-
tages of SSDs 108a-1085. Accordingly, a direct-SSD system
may not scale when the administrator must configure tens or
hundreds of virtual machines. Furthermore, for each VM 102
to be cached, an administrator may perform multiple steps for
each VM 102. In particular, using the direct-SSD system
illustrated in FIG. 1B, the administrator may: (1) provision an
SSD 108 and configure the VMs 102 to use SSD 108, and (2)
manage the standalone caching software in each VM 102.
Furthermore, using dedicated SSDs may provide poor utili-
zation of the SSD when other VMs are idle. The direct-SSD
system illustrated in FIG. 1B may allocate an SSD for use by
a VM 102 configured with the standalone caching software.
Accordingly, when using the direct-SSD system illustrated in
FIG. 1B configured as described above, an allocated SSD
may become unavailable for use by other VMs.

FIG. 2 illustrates a block diagram of another system for
hypervisor caching using a virtual machine, e.g., a VMCache,
in accordance with the present disclosure. FIG. 2 includes a
hypervisor server 100, the virtual machines (“VMs”) 102a-
102¢, and a storage server 200 connected to logical unit
numbers (LUNs) 206a-b over interfaces 208a-b. FIG. 2 fur-
ther includes a VMCache 210 connected to the storage server
through interface 214, and connected to SSDs 216a-b. A
Virtual Machine File System (“VMFS”) 202 is connected to
the VMCache 210 over interface 218, and connected to the
VMs 102a-102¢ over interface 204. The disclosed embodi-
ments also are applicable when the storage subsystem used is
a fiber channel protocol for the SAN storage in place of an
iSCSI protocol for the SAN storage, and any type of protocol
that may be appropriate to communicate with a remote stor-
age device should be considered within the scope of the
disclosure.

Asillustrated in FIG. 2, with reference to FIGS. 1A and 1B,
an administrator may configure an underlying logical unit
number (LUN) data store on a storage server 200 (e.g., con-
nected to the hypervisor server 100 using iSCSI communica-
tions protocols). The term Logical Unit Number (LUN) may,
for example, refer to a logical or virtual disk and may be
created and configured on a Storage Area Network (SAN). A
LUN may be similar to hard disk storage as configured on a

US 9,069,587 B2

9

personal computer such as a desktop or notebook computer.
The term iSCSI stands for Internet Small Computer System
Interface (iSCSI), which is an Internet-Protocol-based stor-
age networking standard for using LUNSs. As illustrated in
FIG. 2, storage server 200 may read data from and write data
to LUNs 206a-2065 using interfaces 208a-208b. Read and
write operations may be slower when handled by the LUNs
206a-2065, than if the same read and write operations are
handled by the SSDs 2164-2165.

In another embodiment, a virtual machine 210 (hereinafter
VMCache 210) is created on hypervisor server 100. The
VMCache 210 is separate from the VMs 102a-102¢. The
VMCache 210 may act as an intermediary between VMFS
202 and the underlying LUNs 206a-2065 attached to the
storage server 200 via interfaces 208a-2085. The VMCache
210 may use a hardware virtualization interface for a device
mapping to pass commands and data to and from the SSDs
216a-2165. Exemplary device mappings include configuring
the system for raw device mapping (RDM) and/or configur-
ing the system for PCI pass-through. An administrator may
create and configures the VMCache 210 on the hypervisor
server 100 in software using similar techniques to those used
to create and configure the host VMs 102a¢-102¢. The admin-
istrator may further configure the VMCache 210 with the
software to use SSDs 2164-2164 via interfaces 220 and 222
for caching read and write requests from the VMs 1024-102c¢.
In this way, the VMCache 210 runs as an intermediary
between the storage server 200 using the underlying [.LUNs
206a-2065, and the VMFS 202 used by the VMs 1024-102c¢.
Accordingly, read and write file requests which can be ser-
viced from the faster but smaller SSDs 216a-2165 attached to
the VMCache 210 do not propagate back to the slower but
larger LUNs 206a-2065, as described in further detail below.

Embodiments of the disclosure, in addition to providing
acceleration, also address reliability by configuring a
VMCache data path 218 as an additional redundant data path.
The existing path (219) from VMFS (202) to iSCSI server
(200) may be lowered in priority to allow all data to pass
through the caching engine. This configuration has two
advantages. First, a cache enable operation can be a live
operation. Specifically, the datastore being cached can con-
tain virtual machine files which are currently running
Because at each point in time there is always a consistent
datapath to the storage, virtual machines on the datastore
being cached need not be shutdown. Second, if SSD caching
software or VMCache were to crash, this failure would not
result in an outage of any cached virtual machine. Data would
continue to propagate from the alternately configured path
and would prevent such an outage.

Providing SSD-based storage caching to hypervisor plat-
forms increases overall system performance of read and write
file requests. FIG. 3 illustrates a flow diagram of'a process 300
for responding to read requests in a system for hypervisor
caching using a virtual machine. FIG. 3 will be described
herein with reference to FIGS. 1A, 1B, and 2. When a host
virtual machine 102a-102¢ makes a system call to the VMFS
202 to read data, the present method does not propagate read
requests serviced from the SSDs 2164-2165 attached to the
VMCache 210 back to the underlying LUNs 206a-2065. The
VMCache 210 may be implemented on a virtual machine
between a host VM and one or more LUNs. The VMCache
210 may receive a read request from a host VM 102a-102¢
(step 302). The VMCache 210 sends the read request to cach-
ing software, such as the SSD caching software, running on
the VMCache 210 (step 304). The caching software checks
whether the requested data block is cached (step 306). If the
requested data block is not cached, the caching software reads

5

10

15

20

25

30

35

40

45

50

55

60

65

10

the requested data from LUNs 206a-2065 on the storage
server 200 (step 310) and the caching software writes the
requested data to the SSD 2164-2165 (e.g., using an optional
device mapping) (step 312). On the other hand, if the
requested file is cached, the caching software reads the
requested data block from the SSDs 216a-2165 (e.g., using an
optional device mapping) (step 308). In this event, the cach-
ing software does not propagate the read request to the LUNs
206a-206b, and instead reads the requested data block from
the SSDs 216a-2165. The lack of propagation to the LUNs
206a-2065 improves overall system performance because the
VMCache 210 can provide the requested data from faster
SSDs 216a-2165b, saving the present system from having to
wait for slower LUNs 2064-2065 to read the requested data
block.

FIG. 4 illustrates a flow diagram of a process 400 for
responding to write requests in a system for hypervisor cach-
ing using a virtual machine in accordance with embodiments
of'the present disclosure. FIG. 4 will be described herein with
reference to FIGS. 1A, 1B, and 2. The VMCache 210 may
respond to write requests in a manner similar to responses to
read requests. For example, when a VM 102a-102¢ makes a
system call to VMFS 202 to write data to the VMFS 202,
embodiments of the present disclosure track and store write
requests in the faster SSDs 216a-2165 underlying the
VMCache 210, and the write operations may later be propa-
gated to the slower LUNs 2064-2065 depending on a write
policy. The VMCache 210 receives a write request from a host
VM 102a-102¢ to write data to a file (step 402). The
VMCache 210 sends a write request to the caching software
on the VMCache 210 (step 404). The caching software on
VMCache 210 writes the requested data to the SSD 216a-
2165 (step 406). The caching software writes the data to the
source LUN 2064-2065 corresponding to the file using stor-
age server 200 and interface 214 (step 408). Accordingly, the
SSD 2164, 2165 is able to provide this cached data if the
caching software receives a subsequent read request for the
same data. According to some embodiments this may be
implemented using “write-through” caching wherein the
VMCache 210 writes the data to the SSD 2164-2165 (step
406), and synchronously also writes the data “through” the
SSD to the source LUN 206a-2065 (step 408). According to
some embodiments, this may be implemented using write-
back caching or write-behind caching, wherein writing is
performed first to the cache (e.g., SSDs) and later the source
(e.g., LUNSs 206a-2065).

Embodiments of virtual machine caching described herein
provide faster reads and writes and also provide improved
ease of administration by reducing the number of modules
which require configuration changes. Unlike the direct-SSD
caching system illustrated in FIG. 1A, embodiments of the
virtual machine system illustrated in FIGS. 2-4 do not require
configuration changes in guest operating systems running on
the VMs 102a-102¢. Using embodiments of the virtual
machine system illustrated in FIGS. 2-4, the administrator
does not configure host VMs 102a-102¢ to use caching.
Instead, embodiments of the present system can provide a
single point of management for an administrator, who can
configure only the VMCache 210 as described above.

Embodiments of the virtual machine caching described
herein also improve storage usage when used in Copy-On-
Write applications. A common use for hypervisor systems
includes using multiple virtual machines to represent a single
base configuration of a guest operating system, and using
each virtual machine to contain incremental configuration
changes to the base configuration from one virtual machine to
another. Copy-On-Write refers to a feature whereby a VMFS

US 9,069,587 B2

11

may store incremental configuration changes in a space-effi-
cient manner by storing a base configuration, and deferring
space-intensive copying of the base configuration to new
storage until a host virtual machine requires writing of incre-
mental changes. Because virtual machine caching may oper-
ate against the entire data store including the storage server
200 and the LUNs 206a-206b, the virtual machine system
caches mainly incremental changes, which may represent a
more efficient use of SSD storage space. In contrast, in a
direct-SSD caching system as illustrated in FIG. 1A, caching
software running on a host VM 102a-102¢ may repeatedly
cache copies of the same base configuration, which may
represent an inefficient use of storage space on SSDs 108a-
108b.

The virtual machine caching also improves administration
when used in migration applications for existing hypervisor
deployments. FIG. 5A illustrates an existing hypervisor
deployment to be migrated using embodiments of the present
disclosure. FIG. 5A includes a hypervisor server 100, and the
VMs 102a-102¢ having the interfaces 122a-122¢ to the
VMES 114 configured to use slower storage 116a-1165 over
the interfaces 118a-118c¢. FIG. 5A illustrates, with reference
to FIG. 1B, a migration scenario, whereby an administrator
may adapt an existing hypervisor system deployment to use
the virtual machine caching described above. In existing
hypervisor deployments such as hypervisor server 100, an
administrator may have previously configured VMs 102a-
102c¢ to use the VMFS 114 over the interfaces 122a-122¢. The
administrator also may have previously configured the VMFS
114 to use the existing storage 116a-11664.

FIG. 5B illustrates a migrated hypervisor deployment
using the present system and method. FIG. 5B includes the
hypervisor server 100; the VMs 102a-102¢ reconfigured to
use the Virtual Machine File System (VMFS) 202 with the
interfaces 204-218; the VMCache 210 with the optional
device mapping 212 and the solid state devices (SSDs) 216a-
b; and the storage server 200 configured with the storage
206a, 2065 using interfaces 208a-b. FIG. 5B shows, with
reference to FIGS. 1A, 1B, and 2, the result of migrating an
existing hypervisor system deployment using the present vir-
tual machine caching. To migrate existing hypervisor deploy-
ments, an administrator may reconfigure VMs 102a-102¢ as
follows. Instead of using VMFS 114 with existing storage
116a-116¢ as illustrated in FIG. 5A, an administrator can
reconfigure VMs 102a-102¢ to use VMFS 202 over interface
204. As illustrated in FIG. 5B, an administrator can configure
VMEFS 202 to use the VMCache 210 over interface 218 with
the SSDs 216a-216b over the optional device mapping 212.
The administrator can configures the storage server 200 to use
the existing storage 206a-2065 over interfaces 208a-2085.
Accordingly, embodiments of the disclosure allow an admin-
istrator to use a VMCache 210 to migrate existing hypervisor
deployments so that existing VMs 102a-102¢ gain the benefit
of'the present virtual machine caching using existing storage
216a-2165, simply by changing the VMFS configuration of
the existing VMs 102a-102c.

Additionally, virtual machine caching can improve cache
use efficiency when host virtual machines are shut down.
Virtual machine caching stores active data from virtual
machines and reduces a risk of cached data getting stale by
reducing caching of inactive machines. In a virtual machine
system, such as those illustrated in FIGS. 2-4, if an adminis-
trator shuts down a VM 102a-102¢, then the caching software
on the VMCache 210 would slowly stop caching data related
to one or more inactive VMs of VMs 102a-102¢. Accordingly,
the virtual machine system may cache new data from one or
more active VMs of VMs 102a-102¢. For example, if VM

10

15

20

25

30

35

40

45

50

55

60

65

12

102a is inactive caching of that virtual machine may be dis-
abled. However, if VM 1026 and VM102c¢ are active they may
be cached. In contrast, in a direct-SSD caching system as
illustrated in FIG. 1A, an underlying SSD 2164-2165 would
be allocated to any inactive VMs of VMs 1024-102¢. As a
result an underlying SSD 2164-2165 may end up underuti-
lized.

Turning to FIGS. 6A and 6B, embodiments of the disclo-
sure may include a cache coherence algorithm, e.g., a method
for managing the cache of virtual machines based upon
whether or not a virtual machine is in operation. To do this,
embodiments of the disclosure determine whether or not data
/0 600 is being received by a virtual machine from the
storage server, e.g., it appears in register 602 (e.g., a bitmap).
If data I/O 600 is received from the storage server, the
VMcache software 604 writes the data into blocks 606 in the
SSDs 608, for example, at the front of cache memory. Data
that has been cached by virtual machines that are not operat-
ing is pushed to the bottom of cache memory to be written
over if enough virtual machines are using the cache. In this
way, cache storage for a virtual machine is disabled when the
machine is powered off or otherwise inactive. Moreover,
cache coherence operations, as described above, may also be
performed when a virtual machine is migrated to another
server.

As shown in FIG. 6B, virtual machine 1 (VM 1) may be
moved from hypervisor server 610 to hypervisor server 612,
thereby requiring cache storage to migrate as well. To do this,
embodiments may invalidate cache storage for the VM 1
operating on hypervisor 610 and connect the cache storage to
the VM 1 once it is running on hypervisor server 612. In step
A, the process starts with the VM 1 operating on hypervisor
server 610 and having cache storage associated therewith, and
hypervisor server 612 having no associated cache storage. As
illustrated cache 614 has two exemplary checks representing
allocated cache and several X’s representing unallocated
cache. Cache 616 of hypervisor 612 has no allocated cache
blocks (i.e., all cache blocks are represented with x’s). In step
B, the cache storage associated with the VM 1 on hypervisor
server 610 is disconnected, and neither hypervisor server 610
nor hypervisor server 612 have associated cache storage for
VM 1. In step C, the VM 1 is migrated to hypervisor server
612 and a portion of cache 616 is connected thereto. Note that
hypervisor server 610 no longer is managing cache storage
for VM 1.

FIG. 6C illustrates a flow diagram of a method 620 for
managing caching of a virtual machine during migration
according to some embodiments of the present disclosure. At
step 622 migration of a virtual machine may be detected. For
example, cache management software may determine that
migration of VM1 of FIG. 6B has been initiated. Caching may
be disabled for a virtual machine determined to be migrating
(e.g., from hypervisor server 610 to hypervisor server 612) at
step 624. At step 626 completion of the virtual machine
migration may be detected (e.g., by cache management soft-
ware). At step 628 caching of the virtual machine may be
enabled on a new virtualization platform (e.g., caching of
VM1 on hypervisor server 612 may be enabled).

To deploy the VMcache software in embodiments of the
disclosure, the following steps may be followed: a connection
between the virtual machine that is operating and the cache
storage device may be established; the virtual machine is
enabled to utilize the cache storage device as a cache; an
alternate input-output path between the virtual machine that
is operating and the hypervisor is created; and the original
path from which the storage is accessed is removed. These
process steps are more readily ascertained from graphical

US 9,069,587 B2

13

user interfaces (GUIs) of FIGS. 7A-7D. As can be seen in
FIG. 7A, the Enhance IO™ screen 700 from the data center
for a virtual machine allows for the selection of a virtual host
702 running VMCache, e.g., a hypervisor such as ESX. Once
the host is selected, the user is presented with the host screen
704 in FIG. 7B. As can be seen, the virtual machines 706
running on the host are presented to the user along with the
datastore 708 the virtual machines are accessing. An indicator
710 indicates whether or not the virtual machine in the list is
cached. In addition, a list of datastores 712 available to the
host is presented to the user in a column. If the user selects a
datastore from the list of datastores 712, the datastore screen
714 in FIG. 7C is presented to the user. Here, the user can
select the name of the datastore 716, the size of the datastore
718, the available SSD volumes 720, the partition to use for a
particular virtual machine 722 (i.e., how much of the datas-
tore the virtual machine can write to), the cache name 724, the
cache mode 726 (i.e., read only, write-through, etc), the block
size for data written to the datastore 728, and the replacement
policy for the datastore 730 (e.g., FIFO, LIFO, etc.). FIG. 7D
depicts performance screen 732 showing cache statistics fora
particular datastore, and includes graphs on the number of
reads/writes to the cache.

The display pages of FIGS. 7A-7D are exemplary of the
GUIs that may be initiated by embodiments of the present
disclosure to perform the functions herein. Other GUIs may
be created that will help with efficiency of datastore entry, add
additional features, or further facilitate caching data from
virtual machines. Accordingly not all embodiments of such
GUIs have been described herein, but will be apparent to one
of skill in the art. Various GUIs may be used instead of or in
addition to the GUIs described herein, and the GUIs are in no
way to be considered limiting to the specification and claims,
but are used for exemplary purposes only.

The terms “SSD”, “SSD device”, and “SSD drive” as used
herein are meant to apply to various configurations of solid
state drive devices equipped with SSD controllers and devices
in accordance with one or more of the various embodiments
of'the disclosed subject matter. It will be understood that other
types of non-volatile mass storage devices in addition to flash
memory devices may also be utilized for mass storage.

Those of skill in the art would appreciate that the various
illustrations in the specification and drawings described
herein may be implemented as electronic hardware, computer
software, or combinations of both. To illustrate this inter-
changeability of hardware and software, various illustrative
blocks, modules, elements, components, methods, and algo-
rithms have been described above generally in terms of their
functionality. Whether such functionality is implemented as
hardware, software, or a combination depends upon the par-
ticular application and design constraints imposed on the
overall system. Skilled artisans may implement the described
functionality in varying ways for each particular application.
Various components and blocks may be arranged differently
(for example, arranged in a different order, or partitioned in a
different way) all without departing from the scope of the
subject technology.

Moreover, in the drawings and specification, there have
been disclosed embodiments of the inventions, and although
specific terms are employed, the term are used in a descriptive
sense only and not for purposes of limitation. For example,
various servers have been described herein as single
machines, but embodiments where the servers comprise a
plurality of machines connected together is within the scope
of the disclosure (e.g., in a parallel computing implementa-
tion or over the cloud). Moreover, the disclosure has been
described in considerable detail with specific reference to

10

15

20

25

30

35

40

45

50

55

60

65

14

these illustrated embodiments. It will be apparent, however,
that various modifications and changes can be made within
the spirit and scope of the disclosure as described in the
foregoing specification, and such modifications and changes
are to be considered equivalents and part of this disclosure.

What is claimed is:

1. A method for caching data from a plurality of virtual
machines, the method comprising:

detecting, using a computer processor executing cache
management software, initiation of migration of a
cached virtual machine from a first virtualization plat-
form to a second virtualization platform, wherein the
cache management software is implemented as a virtual
machine between a virtual machine file system of a
hypervisor and source storage external to the hypervisor
and is exposed to the hypervisor as a storage device,
wherein the virtual machine file system has a direct data
path to the source storage with a low priority and
wherein implementation of the cache management soft-
ware as a virtual machine between the virtual machine
file system and the source storage provides a redundant
data path between the virtual machine file system and
the source storage, the redundant data path having a high
priority and providing data communication including
data caching for the plurality of virtual machines
through the cache management software utilizing the
redundant data path, wherein in the event of failure of the
cache management software, data communication is
performed utilizing the direct data path;

disabling caching in a cache storage, using the cache man-
agement software, for the virtual machine on the first
virtualization platform, wherein the disablement of
caching is in response to the cache management soft-
ware detecting initiation of migration, wherein the cache
storage is separate from the virtual machine file system
and the source storage;

detecting completion of the migration of the virtual
machine to the second virtualization platform; and

enabling caching in the cache storage for the virtual
machine on the second virtualization platform.

2. The method of claim 1, wherein detection of the comple-
tion of the migration of the virtual machine to the second
virtualization platform is performed using a computer pro-
cessor executing cache management software.

3. The method of claim 1, wherein at least one of the first
virtualization platform and the second virtualization platform
comprises a host.

4. The method of claim 1, further comprising:

invalidating, in the cache storage, one or more blocks asso-
ciated with the virtual machine on the first virtualization
platform subsequent to the disabling of caching for the
virtual machine on the first virtualization platform.

5. The method of claim 4, wherein the cache storage com-
prises a Solid State Device (SSD).

6. A system for caching data from a plurality of virtual
machines, the system comprising:

cache storage;

a computer having a non-transitory computer memory hav-
ing stored caching instructions stored in the computer
memory configuring the computer to cache data from
the plurality of virtual machines, the caching instruc-
tions comprising:
detecting initiation of migration of a cached virtual

machine from a first virtualization platform to a sec-
ond virtualization platform, wherein the caching
instructions are implemented as a virtual machine
between a virtual machine file system of a hypervisor

US 9,069,587 B2

15

and source storage external to the hypervisor and is
exposed to the hypervisor as a storage device, wherein
the virtual machine file system has a direct data path to
the source storage with a low priority and wherein
implementation of the cache management software as
a virtual machine between the virtual machine file
system and the source storage provides a redundant
data path between the virtual machine file system and
the source storage, the redundant data path having a
high priority and providing data communication
including data caching for the plurality of virtual
machines through the cache management software
utilizing the redundant data path, wherein in the event
of failure of the cache management software, data
communication is performed utilizing the direct data
path;

disabling caching in the cache storage, using the cache
management software, for the virtual machine on the
first virtualization platform, wherein the disablement
of caching is in response to the cache management
software detecting initiation of migration, wherein
the cache storage is separate from the virtual machine
file system and the source storage;

detecting completion of the migration of the virtual
machine to the second virtualization platform; and

enabling caching in the cache storage for the virtual
machine on the second virtualization platform.

7. The system of claim 6, wherein the cache storage com-
prises a Solid State Device (SSD).

8. The system of claim 6, wherein at least one of the first
virtualization platform and the second virtualization platform
comprises a host.

9. The system of claim 6, further comprising:

invalidating, in the cache storage, one or more blocks asso-

ciated with the virtual machine on the first virtualization
platform subsequent to the disabling of caching for the
virtual machine on the first virtualization platform.

10. An article of manufacture for caching data from a
plurality of virtual machines, the article of manufacture com-
prising:

at least one non-transitory processor readable storage

medium; and

instructions stored on the at least one medium;

10

15

20

25

30

35

40

16

wherein the instructions are configured to be readable from

the at least one medium by at least one processor and

thereby cause the at least one processor to operate so as

to:

detect initiation of migration of'a cached virtual machine
from a first virtualization platform to a second virtu-
alization platform, wherein the instructions comprise
cache management software which is implemented as
a virtual machine between a virtual machine file sys-
tem of a hypervisor and source storage external to the
hypervisor and is exposed to the hypervisor as a stor-
age device, wherein the virtual machine file system
has a direct data path to the source storage with a low
priority and wherein implementation of the cache
management software as a virtual machine between
the virtual machine file system and the source storage
provides a redundant data path between the virtual
machine file system and the source storage, the redun-
dant data path having a high priority and providing
data communication including data caching for the
plurality of virtual machines through the cache man-
agement software utilizing the redundant data path,
wherein in the event of failure of the cache manage-
ment software, data communication is performed uti-
lizing the direct data path;

disable caching in a cache storage, using the cache man-
agement software, for the virtual machine on the first
virtualization platform, wherein the disablement of
caching is in response to the cache management soft-
ware detecting initiation of migration, wherein the
cache storage is separate from the virtual machine file
system and the source storage;

detect completion of the migration of the virtual
machine to the second virtualization platform; and

enable caching in the cache storage for the virtual
machine on the second virtualization platform.

11. The article of manufacture of claim 10, wherein the
instructions further comprise instructions configured to cause
the at least one processor to operate so as to:

invalidate, in the cache storage, one or more blocks asso-

ciated with the virtual machine on the first virtualization
platform subsequent to the disabling of caching for the
virtual machine on the first virtualization platform.

#* #* #* #* #*

